Using hydrogeophysical methods to understand disturbance in peat soils due to saltwater intrusion: from soil collapse to changes in biogenic gas dynamics

Xavier Comas; Matt Sirianni; Greg Mount; Carlos Coronado; and David Rudnick

INDIANA UNIVERSITY OF PENNSYLVANIA

1.Introduction:

Current

Sawgrass marsh builds peat soil on top of the limestone only in freshwater areas. Mangroves develop peat soil in saline and brackish conditions.

② Saltwater Intrusion

Intrusion of saltwater causes sawgrass dieback and mangrove expansion. Freshwater peat soil begins to degrade with exposure to saltwater.

Peat Collapse

Freshwater peat collapses and the water is too deep for plants to become established. Mangroves established elsewhere help to re-stabilize soil.

FROM ABOVE

From: Davis and Everglades Foundation

- Pore dilation in peat soils:
 - Ours et al, 1997; Hoag and Price, 1997
 - Sphagnum peat soils

Ramirez et al, 2015

Biogenic gas dynamics:

- Increased dilation may increase biogenic gas release (i.e. ebullition)
- Increased salinity decreases gas production (i.e. methane)

2. Objectives:

- To investigate the effects of salinization on:
 - <u>1) the peat matrix and</u> <u>potential peat collapse,</u> as induced by changes in the physical properties of peat (i.e. porosity or hydraulic conductivity)
 - 2) biogenic gas fluxes in peat soils, particularly in terms of production, accumulation and release of biogenic gases in peat soils (such as methane and carbon dioxide)

3. Methodology:

approach is: a) multi-method; b) multi-scale: both in space and time; c) field+lab based

4. Fieldsites

Fakahatchee Strand State Preserve

preliminary

WCAs

FSPSP

BCNP

ENP

Copeland

Google Earth

Everglades

75

km

100

Bear Island

50

25

0

018 Google

Russell Key

Ponds and saltwater conductivity

Site 1

Google Earth

Pocking and pond formation and growth; Andres, Savarese et al 2009

Site 2 No well defined ponds (precursors?) and brackish conductivity

Site 3? freshwater

Disney Wilderness Preserve (DWP)

Blue Cypress Preserve

WCA-1

LILA – Loxahatchee National Wildlife Refuge

WCA-2

WCA-3

Big Cypress – Dwarf Cypress; Cypress Swamp

5. Results: a) laboratory scale

Physical properties, i.e. K

Biogenic gas dynamics

Sirianni and Comas, in prep

Fluid Conductivity (S m⁻¹)

- - - - - Release - - - Production

Sirianni and Comas, in prep

- - - - - Release - - - Production

Sirianni and Comas, in prep

Site 1

Site 1

b) Landscape scale: geophysical characterization

Boreal peat soils, Caribou Bog, Maine

No continuity either laterally (like thicker peatland systems) or with depth (like sinkholes or dissolution features)

c) Plot scale: platform setup

- Gas released
- moisture content
- Temperature
- EC
- water table
- salinity
- surface deformation

d) Modeling

Peat core in profile

Modeled peat

MEGA (Model of Ebullition and Gas storAge)

d) Modeling

Modified from Ramirez et al, 2015

Dense peat

Open peat

6. Conclusions

Physical properties:

- Increased salinization induces progressive peat pore dilation resulting in increased hydraulic conductivity. Threshold at around 0.2-0.3 S m⁻¹ with a change in dynamics
- Strikingly similar pore dilation dynamics between boreal and subtropical soils
- At the field scale, pond initiation is characterized by a contrast in electrical conductivity with no apparent lithological control from underlying limestone

Biogenic gas dynamics:

Progressive decreased in production, accumulation, and release of biogenic gas with increased conductivity. Consistent threshold showing change in dynamics (sudden release)

7. Acknowledgements:

Individuals/Collaborators:

- Jorge Ramirez, University of Bern
- FAU: Brian Benscoter;
- UCF: Ross Hinkle
- USGS: Barclay Shoemaker, David Sumner, Ronnie Best, Vic Engel, Nick Aumen.
 - Lee Slater (Rutgers Univ.); Andrew Reeve (Univ. of Maine); Paul Glaser (Univ. Minnesota

Funding agencies:

- NPS, U.S. DOI17-440
- USGS (Greater Everglades Priority Ecosystem Science)
- National Oceanic and Atmospheric Administration (NOAA): grant # GC11-337